Australian Politics Forum
http://www.ozpolitic.com/forum/YaBB.pl
Member Run Boards >> Environment >> The IPCC’s attribution methodology flawed
http://www.ozpolitic.com/forum/YaBB.pl?num=1629444990

Message started by lee on Aug 20th, 2021 at 5:36pm

Title: The IPCC’s attribution methodology flawed
Post by lee on Aug 20th, 2021 at 5:36pm
One day after the IPCC released the AR6 I published a paper in Climate Dynamics showing that their “Optimal Fingerprinting” methodology on which they have long relied for attributing climate change to greenhouse gases is seriously flawed and its results are unreliable and largely meaningless. Some of the errors would be obvious to anyone trained in regression analysis, and the fact that they went unnoticed for 20 years despite the method being so heavily used does not reflect well on climatology as an empirical discipline.

My paper is a critique of “Checking for model consistency in optimal fingerprinting” by Myles Allen and Simon Tett, which was published in Climate Dynamics in 1999 and to which I refer as AT99. Their attribution methodology was instantly embraced and promoted by the IPCC in the 2001 Third Assessment Report (coincident with their embrace and promotion of the Mann hockey stick). The IPCC promotion continues today: see AR6 Section 3.2.1. It has been used in dozens and possibly hundreds of studies over the years. Wherever you begin in the Optimal Fingerprinting literature (example), all paths lead back to AT99, often via Allen and Stott (2003). So its errors and deficiencies matter acutely.

The abstract of my paper reads as follows:

“Allen and Tett (1999, herein AT99) introduced a Generalized Least Squares (GLS) regression methodology for decomposing patterns of climate change for attribution purposes and proposed the “Residual Consistency Test” (RCT) to check the GLS specification. Their methodology has been widely used and highly influential ever since, in part because subsequent authors have relied upon their claim that their GLS model satisfies the conditions of the Gauss-Markov (GM) Theorem, thereby yielding unbiased and efficient estimators. But AT99 stated the GM Theorem incorrectly, omitting a critical condition altogether, their GLS method cannot satisfy the GM conditions, and their variance estimator is inconsistent by construction. Additionally, they did not formally state the null hypothesis of the RCT nor identify which of the GM conditions it tests, nor did they prove its distribution and critical values, rendering it uninformative as a specification test. The continuing influence of AT99 two decades later means these issues should be corrected.  I identify 6 conditions needing to be shown for the AT99 method to be valid.”

The Allen and Tett paper had merit as an attempt to make operational some ideas emerging from an engineering (signal processing) paradigm for the purpose of analyzing climate data. The errors they made come from being experts in one thing but not another, and the review process in both climate journals and IPCC reports is notorious for not involving people with relevant statistical expertise (despite the reliance on statistical methods). If someone trained in econometrics had refereed their paper 20 years ago the problems would have immediately been spotted, the methodology would have been heavily modified or abandoned and a lot of papers since then would probably never have been published (or would have, but with different conclusions—I suspect most would have failed to report “attribution”).

Optimal Fingerprinting

AT99 made a number of contributions. They took note of previous proposals for estimating the greenhouse “signal” in observed climate data and showed that they were equivalent to a statistical technique called Generalized Least Squares (GLS). They then argued that, by construction, their GLS model satisfies the Gauss-Markov (GM) conditions, which according to an important theorem in statistics means it yields unbiased and efficient parameter estimates. (“Unbiased” means the expected value of an estimator equals the true value. “Efficient” means all the available sample information is used, so the estimator has the minimum variance possible.) If an estimator satisfies the GM conditions, it is said to be “BLUE”—the Best (minimum variance) Linear Unbiased Estimator; or the best option out of the entire class of estimators that can be expressed as a linear function of the dependent variable. AT99 claimed that their estimator satisfies the GM conditions and therefore is BLUE, a claim repeated and relied upon subsequently by other authors in the field. They also introduced a “Residual Consistency” (RC) test which they said could be used to assess the validity of the fingerprinting regression model.

Unfortunately these claims are untrue. Their method is not a conventional GLS model. It does not, and cannot, satisfy the GM conditions and in particular it violates an important condition for unbiasedness. And rejection or non-rejection of the RC test tells us nothing about whether the results of an optimal fingerprinting regression are valid.

AT99 and the IPCC

AT99 was heavily promoted in the 2001 IPCC Third Assessment Report (TAR Chapter 12, Box 12.1, Section 12.4.3 and Appendix 12.1) and has been referenced in every IPCC Assessment Report since. TAR Appendix 12.1 was headlined “Optimal Detection is Regression” and began

The detection technique that has been used in most “optimal detection” studies performed to date has several equivalent representations (Hegerl and North, 1997; Zwiers, 1999). It has recently been recognised that it can be cast as a multiple regression problem with respect to generalised least squares (Allen and Tett, 1999; see also Hasselmann, 1993, 1997)

TBC

Title: Re: The IPCC’s attribution methodology flawed
Post by lee on Aug 20th, 2021 at 5:40pm
Cont.
The growing level of confidence regarding attribution of climate change to GHG’s expressed by the IPCC and others over the past two decades rests principally on the many studies that employ the AT99 method, including the RC test. The methodology is still in wide use, albeit with a couple of minor changes that don’t address the flaws identified in my critique. (Total Least Squares or TLS, for instance, introduces new biases and problems which I analyze elsewhere; and regularization methods to obtain a matrix inverse do not fix the underlying theoretical flaws). There have been a small number of attribution papers using other methods, including ones which the TAR mentioned. “Temporal” or time series analyses have their own flaws which I will address separately (put briefly, regressing I(0) temperatures on I(1) forcings creates obvious problems of interpretation).

The Gauss-Markov (GM) Theorem

As with regression methods generally, everything in this discussion centres on the GM Theorem. There are two GM conditions that a regression model needs to satisfy to be BLUE. The first, called homoskedasticity, is that the error variances must be constant across the sample. The second, called conditional independence, is that the expected values of the error terms must be independent of the explanatory variables. If homoskedasticity fails, least squares coefficients will still be unbiased but their variance estimates will be biased. If conditional independence fails, least squares coefficients and their variances will be biased and inconsistent, and the regression model output is unreliable. (“Inconsistent” means the coefficient distribution does not converge on the right answer even as the sample size goes to infinite.)

I teach the GM theorem every year in introductory econometrics. (As an aside, that means I am aware of the ways I have oversimplified the presentation, but you can refer to the paper and its sources for the formal version). It comes up near the beginning of an introductory course in regression analysis. It is not an obscure or advanced concept, it is the foundation of regression modeling techniques. Much of econometrics consists of testing for and remedying violations of the GM conditions.

The AT99 Method

(It is not essential to understand this paragraph, but it helps for what follows.) Optimal Fingerprinting works by regressing observed climate data onto simulated analogues from climate models which are constructed to include or omit specific forcings. The regression coefficients thus provide the basis for causal inference regarding the forcing, and estimation of the magnitude of each factor’s influence. Authors prior to AT99 argued that failure of the homoskedasticity condition might thwart signal detection, so they proposed transforming the observations by premultiplying them by a matrix P which is constructed as the matrix root of the inverse of a “climate noise” matrix C, itself computed using the covariances from preindustrial control runs of climate models. But because C is not of full rank its inverse does not exist, so P can instead be computed using a Moore-Penrose pseudo inverse, selecting a rank which in practice is far smaller than the number of observations in the regression model itself.

The Main Error in AT99

AT99 asserted that the signal detection regression model applying the P matrix weights is homoscedastic by construction, therefore it satisfies the GM conditions, therefore its estimates are unbiased and efficient (BLUE). Even if their model yields homoscedastic errors (which is not guaranteed) their statement is obviously incorrect: they left out the conditional independence assumption. Neither AT99 nor—as far as I have seen—anyone in the climate detection field has ever mentioned the conditional independence assumption nor discussed how to test it nor the consequences should it fail.

And fail it does—routinely in regression modeling; and when it fails the results can be spectacularly wrong, including wrong signs and meaningless magnitudes. But you won’t know that unless you test for specific violations. In the first version of my paper (written in summer 2019) I criticized the AT99 derivation and then ran a suite of AT99-style optimal fingerprinting regressions using 9 different climate models and showed they routinely fail standard conditional independence tests. And when I implemented some standard remedies, the greenhouse gas signal was no longer detectable. I sent that draft to Allen and Tett in late summer 2019 and asked for their comments, which they undertook to provide. But hearing none after several months I submitted it to the Journal of Climate, requesting Allen and Tett be asked to review it. Tett provided a constructive (signed) review, as did two other anonymous reviewers, one of whom was clearly an econometrician (another might have been Allen but it was anonymous so I don’t know). After several rounds the paper was rejected. Although Tett and the econometrician supported publication the other reviewer and the editor did not like my proposed alternative methodology. But none of the reviewers disputed my critique of AT99’s handling of the GM theorem. So I carved that part out and sent it in winter 2021 to Climate Dynamics, which accepted it after 3 rounds of review.

More...

https://judithcurry.com/2021/08/18/the-ipccs-attribution-methodology-is-fundamentally-flawed/

Title: Re: The IPCC’s attribution methodology flawed
Post by Ajax on Aug 22nd, 2021 at 9:25am
Thanks Lee more evidence that the Computer models are flawed.

And governments are setting policies to this flawed science.


Australian Politics Forum » Powered by YaBB 2.5.2!
YaBB Forum Software © 2000-2024. All Rights Reserved.