Freediver, you are the idiot here making the spurious claim that evolution is not science, you are the one with a huge article on the topic that is completely devoid of citations, you are the one making claims that there are scientists out there the agree with you... without providing proof!
so it is true? You do not read my posts before responding to them?
Sources?
http://talkorigins.org/indexcc/CA/CA211_1.htmlcited sources on that page:
# Miller, David. 1985. Popper Selections.
# Popper, Karl. 1976. Unended Quest: An Intellectual Autobiography Glasgow: Fontana/Collins.
# Popper, Karl. 1978. Natural selection and the emergence of mind. Dialectica 32: 339-355.
http://talkorigins.org/indexcc/CB/CB102.htmlCited sources on that page:
# Adami et al., 2000. (see below)
# Alves, M. J., M. M. Coelho and M. J. Collares-Pereira, 2001. Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: a genetic review. Genetica 111(1-3): 375-385.
# Brown, C. J., K. M. Todd and R. F. Rosenzweig, 1998. Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. Molecular Biology and Evolution 15(8): 931-942. http://mbe.oupjournals.org/cgi/reprint/15/8/931.pdf
# Hughes, A. L. and R. Friedman, 2003. Parallel evolution by gene duplication in the genomes of two unicellular fungi. Genome Research 13(5): 794-799.
# Knox, J. R., P. C. Moews and J.-M. Frere, 1996. Molecular evolution of bacterial beta-lactam resistance. Chemistry and Biology 3: 937-947.
# Lang, D. et al., 2000. Structural evidence for evolution of the beta/alpha barrel scaffold by gene duplication and fusion. Science 289: 1546-1550. See also Miles, E. W. and D. R. Davies, 2000. On the ancestry of barrels. Science 289: 1490.
# Lenski, R. E., 1995. Evolution in experimental populations of bacteria. In: Population Genetics of Bacteria, Society for General Microbiology, Symposium 52, S. Baumberg et al., eds., Cambridge, UK: Cambridge University Press, pp. 193-215.
# Lenski, R. E., M. R. Rose, S. C. Simpson and S. C. Tadler, 1991. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. American Naturalist 138: 1315-1341.
# Lynch, M. and J. S. Conery, 2000. The evolutionary fate and consequences of duplicate genes. Science 290: 1151-1155. See also Pennisi, E., 2000. Twinned genes live life in the fast lane. Science 290: 1065-1066.
# Ohta, T., 2003. Evolution by gene duplication revisited: differentiation of regulatory elements versus proteins. Genetica 118(2-3): 209-216.
# Park, I.-S., C.-H. Lin and C. T. Walsh, 1996. Gain of D-alanyl-D-lactate or D-lactyl-D-alanine synthetase activities in three active-site mutants of the Escherichia coli D-alanyl-D-alanine ligase B. Biochemistry 35: 10464-10471.
# Prijambada, I. D., S. Negoro, T. Yomo and I. Urabe, 1995. Emergence of nylon oligomer degradation enzymes in Pseudomonas aeruginosa PAO through experimental evolution. Applied and Environmental Microbiology 61(5): 2020-2022.
# Schneider, T. D., 2000. Evolution of biological information. Nucleic Acids Research 28(14): 2794-2799. http://www-lecb.ncifcrf.gov/~toms/paper/ev/
# Zhang, J., Y.-P. Zhang and H. F. Rosenberg, 2002. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nature Genetics 30: 411-415. See also: Univ. of Michigan, 2002, How gene duplication helps in adapting to changing environments.
complete list or arguments and counter arguments on that website, many of which have cited academic sources:
http://talkorigins.org/indexcc/list.htmlAnd some examples of controlled empirical experiment that have lead to confirmed speciation events:
http://talkorigins.org/faqs/faq-speciation.html Quote:5.0 Observed Instances of Speciation
The following are several examples of observations of speciation.
5.1 Speciations Involving Polyploidy, Hybridization or Hybridization Followed by Polyploidization.
5.1.1 Plants
(See also the discussion in de Wet 1971).
5.1.1.1 Evening Primrose (Oenothera gigas)
While studying the genetics of the evening primrose, Oenothera lamarckiana, de Vries (1905) found an unusual variant among his plants. O. lamarckiana has a chromosome number of 2N = 14. The variant had a chromosome number of 2N = 28. He found that he was unable to breed this variant with O. lamarckiana. He named this new species O. gigas.
5.1.1.2 Kew Primrose (Primula kewensis)
Digby (1912) crossed the primrose species Primula verticillata and P. floribunda to produce a sterile hybrid. Polyploidization occurred in a few of these plants to produce fertile offspring. The new species was named P. kewensis. Newton and Pellew (1929) note that spontaneous hybrids of P. verticillata and P. floribunda set tetraploid seed on at least three occasions. These happened in 1905, 1923 and 1926.