Forum

 
  Back to OzPolitic.com   Welcome, Guest. Please Login or Register
  Forum Home Album HelpSearch Recent Rules LoginRegister  
 

Pages: 1 ... 4 5 6 7 8 ... 28
Send Topic Print
EVOLUTION VS RELIGION (Read 74026 times)
zoso
Gold Member
*****
Offline


OzPolitic

Posts: 512
Re: Evolution v's Religion
Reply #75 - Apr 16th, 2007 at 1:49pm
 
Quote:
5.5.2 Gall Former Fly (Eurosta solidaginis)

Eurosta solidaginis is a gall forming fly that is associated with goldenrod plants. It has two hosts: over most of its range it lays its eggs in Solidago altissima, but in some areas it uses S. gigantea as its host. Recent electrophoretic work has shown that the genetic distances among flies from different sympatric hosts species are greater than the distances among flies on the same host in different geographic areas (Waring et al. 1990). This same study also found reduced variability in flies on S. gigantea. This suggests that some E. solidaginis have recently shifted hosts to this species. A recent study has compared reproductive behavior of the flies associated with the two hosts (Craig et al. 1993). They found that flies associated with S. gigantea emerge earlier in the season than flies associated with S. altissima. In host choice experiments, each fly strain ovipunctured its own host much more frequently than the other host. Craig et al. (1993) also performed several mating experiments. When no host was present and females mated with males from either strain, if males from only one strain were present. When males of both strains were present, statistically significant positive assortative mating was seen. In the presence of a host, assortative mating was also seen. When both hosts and flies from both populations were present, females waited on the buds of the host that they are normally associated with. The males fly to the host to mate. Like the Rhagoletis case above, this may represent the beginning of a sympatric speciation.
5.6 Flour Beetles (Tribolium castaneum)

Halliburton and Gall (1981) established a population of flour beetles collected in Davis, California. In each generation they selected the 8 lightest and the 8 heaviest pupae of each sex. When these 32 beetles had emerged, they were placed together and allowed to mate for 24 hours. Eggs were collected for 48 hours. The pupae that developed from these eggs were weighed at 19 days. This was repeated for 15 generations. The results of mate choice tests between heavy and light beetles was compared to tests among control lines derived from randomly chosen pupae. Positive assortative mating on the basis of size was found in 2 out of 4 experimental lines.
5.7 Speciation in a Lab Rat Worm, Nereis acuminata

In 1964 five or six individuals of the polychaete worm, Nereis acuminata, were collected in Long Beach Harbor, California. These were allowed to grow into a population of thousands of individuals. Four pairs from this population were transferred to the Woods Hole Oceanographic Institute. For over 20 years these worms were used as test organisms in environmental toxicology. From 1986 to 1991 the Long Beach area was searched for populations of the worm. Two populations, P1 and P2, were found. Weinberg, et al. (1992) performed tests on these two populations and the Woods Hole population (WH) for both postmating and premating isolation. To test for postmating isolation, they looked at whether broods from crosses were successfully reared. The results below give the percentage of successful rearings for each group of crosses.
WH × WH      -      75%
P1 × P1      -      95%
P2 × P2      -      80%
P1 × P2      -      77%
WH × P1      -       0%
WH × P2      -       0%

They also found statistically significant premating isolation between the WH population and the field populations. Finally, the Woods Hole population showed slightly different karyotypes from the field populations.
5.8 Speciation Through Cytoplasmic Incompatability Resulting from the Presence of a Parasite or Symbiont

In some species the presence of intracellular bacterial parasites (or symbionts) is associated with postmating isolation. This results from a cytoplasmic incompatability between gametes from strains that have the parasite (or symbiont) and stains that don't. An example of this is seen in the mosquito Culex pipiens (Yen and Barr 1971). Compared to within strain matings, matings between strains from different geographic regions may may have any of three results: These matings may produce a normal number of offspring, they may produce a reduced number of offspring or they may produce no offspring. Reciprocal crosses may give the same or different results. In an incompatible cross, the egg and sperm nuclei fail to unite during fertilization. The egg dies during embryogenesis. In some of these strains, Yen and Barr (1971) found substantial numbers of Rickettsia-like microbes in adults, eggs and embryos. Compatibility of mosquito strains seems to be correlated with the strain of the microbe present. Mosquitoes that carry different strains of the microbe exhibit cytoplasmic incompatibility; those that carry the same strain of microbe are interfertile.

Similar phenomena have been seen in a number of other insects. Microoganisms are seen in the eggs of both Nasonia vitripennis and N. giraulti. These two species do not normally hybridize. Following treatment with antibiotics, hybrids occur between them (Breeuwer and Werren 1990). In this case, the symbiont is associated with improper condensation of host chromosomes.

For more examples and a critical review of this topic, see Thompson 1987.
Back to top
 
 
IP Logged
 
zoso
Gold Member
*****
Offline


OzPolitic

Posts: 512
Re: Evolution v's Religion
Reply #76 - Apr 16th, 2007 at 1:49pm
 
Quote:
5.9 A Couple of Ambiguous Cases

So far the BSC has applied to all of the experiments discussed. The following are a couple of major morphological changes produced in asexual species. Do these represent speciation events? The answer depends on how species is defined.
5.9.1 Coloniality in Chlorella vulgaris

Boraas (1983) reported the induction of multicellularity in a strain of Chlorella pyrenoidosa (since reclassified as C. vulgaris) by predation. He was growing the unicellular green alga in the first stage of a two stage continuous culture system as for food for a flagellate predator, Ochromonas sp., that was growing in the second stage. Due to the failure of a pump, flagellates washed back into the first stage. Within five days a colonial form of the Chlorella appeared. It rapidly came to dominate the culture. The colony size ranged from 4 cells to 32 cells. Eventually it stabilized at 8 cells. This colonial form has persisted in culture for about a decade. The new form has been keyed out using a number of algal taxonomic keys. They key out now as being in the genus Coelosphaerium, which is in a different family from Chlorella.
5.9.2 Morphological Changes in Bacteria

Shikano, et al. (1990) reported that an unidentified bacterium underwent a major morphological change when grown in the presence of a ciliate predator. This bacterium's normal morphology is a short (1.5 um) rod. After 8 - 10 weeks of growing with the predator it assumed the form of long (20 um) cells. These cells have no cross walls. Filaments of this type have also been produced under circumstances similar to Boraas' induction of multicellularity in Chlorella. Microscopic examination of these filaments is described in Gillott et al. (1993). Multicellularity has also been produced in unicellular bacterial by predation (Nakajima and Kurihara 1994). In this study, growth in the presence of protozoal grazers resulted in the production of chains of bacterial cells.


Back to top
 
 
IP Logged
 
freediver
Gold Member
*****
Offline


www.ozpolitic.com

Posts: 48856
At my desk.
Re: Evolution v's Religion
Reply #77 - Apr 16th, 2007 at 1:50pm
 
I meant sources for the statistics that you 'made up.'
Back to top
 

People who can't distinguish between etymology and entomology bug me in ways I cannot put into words.
WWW  
IP Logged
 
zoso
Gold Member
*****
Offline


OzPolitic

Posts: 512
Re: Evolution v's Religion
Reply #78 - Apr 16th, 2007 at 1:50pm
 
Quote:
6.0 References

Ahearn, J. N. 1980. Evolution of behavioral reproductive isolation in a laboratory stock of Drosophila silvestris. Experientia. 36:63-64.

Barton, N. H., J. S. Jones and J. Mallet. 1988. No barriers to speciation. Nature. 336:13-14.

Baum, D. 1992. Phylogenetic species concepts. Trends in Ecology and Evolution. 7:1-3.

Boraas, M. E. 1983. Predator induced evolution in chemostat culture. EOS. Transactions of the American Geophysical Union. 64:1102.

Breeuwer, J. A. J. and J. H. Werren. 1990. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature. 346:558-560.

Budd, A. F. and B. D. Mishler. 1990. Species and evolution in clonal organisms -- a summary and discussion. Systematic Botany 15:166-171.

Bullini, L. and G. Nascetti. 1990. Speciation by hybridization in phasmids and other insects. Canadian Journal of Zoology. 68:1747-1760.

Butters, F. K. 1941. Hybrid Woodsias in Minnesota. Amer. Fern. J. 31:15-21.

Butters, F. K. and R. M. Tryon, jr. 1948. A fertile mutant of a Woodsia hybrid. American Journal of Botany. 35:138.

Brock, T. D. and M. T. Madigan. 1988. Biology of Microorganisms (5th edition). Prentice Hall, Englewood, NJ.

Callaghan, C. A. 1987. Instances of observed speciation. The American Biology Teacher. 49:3436.

Castenholz, R. W. 1992. Species usage, concept, and evolution in the cyanobacteria (blue-green algae). Journal of Phycology 28:737-745.

Clausen, J., D. D. Keck and W. M. Hiesey. 1945. Experimental studies on the nature of species. II. Plant evolution through amphiploidy and autoploidy, with examples from the Madiinae. Carnegie Institute Washington Publication, 564:1-174.

Cracraft, J. 1989. Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and processes of differentiation. In Otte, E. and J. A. Endler [eds.] Speciation and its consequences. Sinauer Associates, Sunderland, MA. pp. 28-59.

Craig, T. P., J. K. Itami, W. G. Abrahamson and J. D. Horner. 1993. Behavioral evidence for host-race fromation in Eurosta solidaginis. Evolution. 47:1696-1710.

Cronquist, A. 1978. Once again, what is a species? Biosystematics in agriculture. Beltsville Symposia in Agricultural Research 2:3-20.

Cronquist, A. 1988. The evolution and classification of flowering plants (2nd edition). The New York Botanical Garden, Bronx, NY.

Crossley, S. A. 1974. Changes in mating behavior produced by selection for ethological isolation between ebony and vestigial mutants of Drosophilia melanogaster. Evolution. 28:631-647.

de Oliveira, A. K. and A. R. Cordeiro. 1980. Adaptation of Drosophila willistoni experimental populations to extreme pH medium. II. Development of incipient reproductive isolation. Heredity. 44:123-130.

de Queiroz, K. and M. Donoghue. 1988. Phylogenetic systematics and the species problem. Cladistics. 4:317-338.

de Queiroz, K. and M. Donoghue. 1990. Phylogenetic systematics and species revisited. Cladistics. 6:83-90.

de Vries, H. 1905. Species and varieties, their origin by mutation.

de Wet, J. M. J. 1971. Polyploidy and evolution in plants. Taxon. 20:29-35.

del Solar, E. 1966. Sexual isolation caused by selection for positive and negative phototaxis and geotaxis in Drosophila pseudoobscura. Proceedings of the National Academy of Sciences (US). 56:484-487.

Digby, L. 1912. The cytology of Primula kewensis and of other related Primula hybrids. Ann. Bot. 26:357-388.

Dobzhansky, T. 1937. Genetics and the origin of species. Columbia University Press, New York.

Dobzhansky, T. 1951. Genetics and the origin of species (3rd edition). Columbia University Press, New York.

Dobzhansky, T. and O. Pavlovsky. 1971. Experimentally created incipient species of Drosophila. Nature. 230:289-292.

Dobzhansky, T. 1972. Species of Drosophila: new excitement in an old field. Science. 177:664-669.

Dodd, D. M. B. 1989. Reproductive isolation as a consequence of adaptive divergence in Drosophila melanogaster. Evolution 43:1308-1311.

Dodd, D. M. B. and J. R. Powell. 1985. Founder-flush speciation: an update of experimental results with Drosophila. Evolution 39:1388-1392.

Donoghue, M. J. 1985. A critique of the biological species concept and recommendations for a phylogenetic alternative. Bryologist 88:172-181.

Du Rietz, G. E. 1930. The fundamental units of biological taxonomy. Svensk. Bot. Tidskr. 24:333-428.

Ehrman, E. 1971. Natural selection for the origin of reproductive isolation. The American Naturalist. 105:479-483.

Ehrman, E. 1973. More on natural selection for the origin of reproductive isolation. The American Naturalist. 107:318-319.

Feder, J. L., C. A. Chilcote and G. L. Bush. 1988. Genetic differentiation between sympatric host races of the apple maggot fly, Rhagoletis pomonella. Nature. 336:61-64.

Feder, J. L. and G. L. Bush. 1989. A field test of differential host-plant usage between two sibling species of Rhagoletis pomonella fruit flies (Diptera:Tephritidae) and its consequences for sympatric models of speciation. Evolution 43:1813-1819.

Frandsen, K. J. 1943. The experimental formation of Brassica juncea Czern. et Coss. Dansk. Bot. Arkiv., No. 4, 11:1-17.

Frandsen, K. J. 1947. The experimental formation of Brassica napus L. var. oleifera DC and Brassica carinata Braun. Dansk. Bot. Arkiv., No. 7, 12:1-16.
Back to top
 
 
IP Logged
 
zoso
Gold Member
*****
Offline


OzPolitic

Posts: 512
Re: Evolution v's Religion
Reply #79 - Apr 16th, 2007 at 1:50pm
 
Quote:
Galiana, A., A. Moya and F. J. Alaya. 1993. Founder-flush speciation in Drosophila pseudoobscura: a large scale experiment. Evolution. 47432-444.

Gottleib, L. D. 1973. Genetic differentiation, sympatric speciation, and the origin of a diploid species of Stephanomeira. American Journal of Botany. 60: 545-553.

Halliburton, R. and G. A. E. Gall. 1981. Disruptive selection and assortative mating in Tribolium castaneum. Evolution. 35:829-843.

Hurd, L. E., and R. M. Eisenberg. 1975. Divergent selection for geotactic response and evolution of reproductive isolation in sympatric and allopatric populations of houseflies. The American Naturalist. 109:353-358.

Karpchenko, G. D. 1927. Polyploid hybrids of Raphanus sativus L. X Brassica oleraceae L. Bull. Appl. Botany. 17:305-408.

Karpchenko, G. D. 1928. Polyploid hybrids of Raphanus sativus L. X Brassica oleraceae L. Z. Indukt. Abstami-a Verenbungsi. 48:1-85.

Kilias, G., S. N. Alahiotis and M. Delecanos. 1980. A multifactorial investigation of speciation theory using Drosophila melanogaster. Evolution. 34:730-737.

Knight, G. R., A. Robertson and C. H. Waddington. 1956. Selection for sexual isolation within a species. Evolution. 10:14-22.

Koopman, K. F. 1950. Natural selection for reproductive isolation between Drosophila pseudoobscura and Drosophila persimilis. Evolution. 4:135-148.

Lee, R. E. 1989. Phycology (2nd edition) Cambridge University Press, Cambridge, UK

Levin, D. A. 1979. The nature of plant species. Science 204:381-384.

Lokki, J. and A. Saura. 1980. Polyploidy in insect evolution. In: W. H. Lewis (ed.) Polyploidy: Biological Relevance. Plenum Press, New York.

Macnair, M. R. 1981. Tolerance of higher plants to toxic materials. In: J. A. Bishop and L. M. Cook (eds.). Genetic consequences of man made change. Pp.177-297. Academic Press, New York.

Macnair, M. R. and P. Christie. 1983. Reproductive isolation as a pleiotropic effect of copper tolerance in Mimulus guttatus. Heredity. 50:295-302.

Manhart, J. R. and R. M. McCourt. 1992. Molecular data and species concepts in the algae. Journal of Phycology. 28:730-737.

Mayr, E. 1942. Systematics and the origin of species from the viewpoint of a zoologist. Columbia University Press, New York.

Mayr, E. 1982. The growth of biological thought: diversity, evolution and inheritance. Harvard University Press, Cambridge, MA. McCourt, R. M. and R. W. Hoshaw. 1990. Noncorrespondence of breeding groups, morphology and monophyletic groups in Spirogyra (Zygnemataceae; Chlorophyta) and the application of species concepts. Systematic Botany. 15:69-78.

McPheron, B. A., D. C. Smith and S. H. Berlocher. 1988. Genetic differentiation between host races of Rhagoletis pomonella. Nature. 336:64-66.

Meffert, L. M. and E. H. Bryant. 1991. Mating propensity and courtship behavior in serially bottlenecked lines of the housefly. Evolution 45:293-306.

Mishler, B. D. 1985. The morphological, developmental and phylogenetic basis of species concepts in the bryophytes. Bryologist. 88:207-214.

Mishler, B. D. and M. J. Donoghue. 1982. Species concepts: a case for pluralism. Systematic Zoology. 31:491-503.

Muntzing, A. 1932. Cytogenetic investigations on the synthetic Galeopsis tetrahit. Hereditas. 16:105-154.

Nelson, G. 1989. Cladistics and evolutionary models. Cladistics. 5:275-289.

Newton, W. C. F. and C. Pellew. 1929. Primula kewensis and its derivatives. J. Genetics. 20:405-467.

Otte, E. and J. A. Endler (eds.). 1989. Speciation and its consequences. Sinauer Associates. Sunderland, MA.

Owenby, M. 1950. Natural hybridization and amphiploidy in the genus Tragopogon. Am. J. Bot. 37:487-499.

Pasterniani, E. 1969. Selection for reproductive isolation between two populations of maize, Zea mays L. Evolution. 23:534-547.

Powell, J. R. 1978. The founder-flush speciation theory: an experimental approach. Evolution. 32:465-474.

Prokopy, R. J., S. R. Diehl, and S. H. Cooley. 1988. Oecologia. 76:138.

Rabe, E. W. and C. H. Haufler. 1992. Incipient polyploid speciation in the maidenhair fern (Adiantum pedatum, adiantaceae)? American Journal of Botany. 79:701-707.

Rice, W. R. 1985. Disruptive selection on habitat preference and the evolution of reproductive isolation: an exploratory experiment. Evolution. 39:645-646.

Rice, W. R. and E. E. Hostert. 1993. Laboratory experiments on speciation: What have we learned in forty years? Evolution. 47:1637-1653.

Rice, W. R. and G. W. Salt. 1988. Speciation via disruptive selection on habitat preference: experimental evidence. The American Naturalist. 131:911-917.

Rice, W. R. and G. W. Salt. 1990. The evolution of reproductive isolation as a correlated character under sympatric conditions: experimental evidence. Evolution. 44:1140-1152.

Ringo, J., D. Wood, R. Rockwell, and H. Dowse. 1989. An experiment testing two hypotheses of speciation. The American Naturalist. 126:642-661.

Schluter, D. and L. M. Nagel. 1995. Parallel speciation by natural selection. American Naturalist. 146:292-301.

Shikano, S., L. S. Luckinbill and Y. Kurihara. 1990. Changes of traits in a bacterial population associated with protozoal predation. Microbial Ecology. 20:75-84.

Smith, D. C. 1988. Heritable divergence of Rhagoletis pomonella host races by seasonal asynchrony. Nature. 336:66-67.

Soans, A. B., D. Pimentel and J. S. Soans. 1974. Evolution of reproductive isolation in allopatric and sympatric populations. The American Naturalist. 108:117-124.
Back to top
 
 
IP Logged
 
zoso
Gold Member
*****
Offline


OzPolitic

Posts: 512
Re: Evolution v's Religion
Reply #80 - Apr 16th, 2007 at 1:51pm
 
Quote:
Soltis, D. E. and P. S. Soltis. 1989. Allopolyploid speciation in Tragopogon: Insights from chloroplast DNA. American Journal of Botany. 76:1119-1124.

Stuessy, T. F. 1990. Plant taxonomy. Columbia University Press, New York.

Thoday, J. M. and J. B. Gibson. 1962. Isolation by disruptive selection. Nature. 193:1164-1166.

Thoday, J. M. and J. B. Gibson. 1970. The probability of isolation by disruptive selection. The American Naturalist. 104:219-230.

Thompson, J. N. 1987. Symbiont-induced speciation. Biological Journal of the Linnean Society. 32:385-393.

Vrijenhoek, R. C. 1994. Unisexual fish: Model systems for studying ecology and evolution. Annual Review of Ecology and Systematics. 25:71-96.

Waring, G. L., W. G. Abrahamson and D. J. Howard. 1990. Genetic differentiation in the gall former Eurosta solidaginis (Diptera:Tephritidae) along host plant lines. Evolution. 44:1648-1655.

Weinberg, J. R., V. R. Starczak and P. Jora. 1992. Evidence for rapid speciation following a founder event in the laboratory. Evolution. 46:1214-1220.

Wood, A. M. and T. Leatham. 1992. The species concept in phytoplankton ecology. Journal of Phycology. 28:723-729.

Yen, J. H. and A. R. Barr. 1971. New hypotheses of the cause of cytoplasmic incompatability in Culex pipiens L.
Back to top
 
 
IP Logged
 
freediver
Gold Member
*****
Offline


www.ozpolitic.com

Posts: 48856
At my desk.
Re: Evolution v's Religion
Reply #81 - Apr 16th, 2007 at 1:51pm
 
Zoso how about you just provide a link rather than copy and paste bombs.
Back to top
 

People who can't distinguish between etymology and entomology bug me in ways I cannot put into words.
WWW  
IP Logged
 
zoso
Gold Member
*****
Offline


OzPolitic

Posts: 512
Re: Evolution v's Religion
Reply #82 - Apr 16th, 2007 at 1:53pm
 
There you go freediver, some reading. Please note that reading goes back onto the previous page... I can just see you reading the final section on 'ambiguous examples' and deciding that my source confirms your view.

Get back to me when you can put down each and every example of observed speciation using sources of your own. Oh and just to give you a leg up, they do exist, you are just being a pvssy if you refuse to go out and find sources of your own... I just look forward to you finding any scientific ones Grin
Back to top
 
 
IP Logged
 
zoso
Gold Member
*****
Offline


OzPolitic

Posts: 512
Re: Evolution v's Religion
Reply #83 - Apr 16th, 2007 at 1:55pm
 
freediver wrote on Apr 16th, 2007 at 1:51pm:
Zoso how about you just provide a link rather than copy and paste bombs.

Because I gave you a stack of links and you appear to have not read them... I'll teach you to tell me I haven't cited sources. Oh and the link is there.

Go forth and educate yourself, welcome to 2007, you may have had an argument back in the 50s
Back to top
 
 
IP Logged
 
zoso
Gold Member
*****
Offline


OzPolitic

Posts: 512
Re: Evolution v's Religion
Reply #84 - Apr 16th, 2007 at 1:58pm
 
freediver wrote on Apr 16th, 2007 at 1:50pm:
I meant sources for the statistics that you 'made up.'

Bah, no sh!t sherlock, did I ever claim it to be a true figure? Way to change the subject freediver you still have cited nothing in your article or your arguments, apart from vague paraphrases from academics on the topic of what qualifies as science - you fail to confirm how evolution falls into that category?

Go out and find me a list of scientists that agree with you (shouldn't be hard), because everywhere I look all I see is scientists talking about studies confirming and expanding upon evolution...
Back to top
 
 
IP Logged
 
freediver
Gold Member
*****
Offline


www.ozpolitic.com

Posts: 48856
At my desk.
Re: Evolution v's Religion
Reply #85 - Apr 16th, 2007 at 2:05pm
 
Zoso, providing more examples of the same thing when I have already pointed out how those examples do not contradict my argument does not help at all. It just shows that you have not understood my argument.

you still have cited nothing in your article or your arguments

That is because my argument is based on common knowledge.

apart from vague paraphrases from academics on the topic of what qualifies as science - you fail to confirm how evolution falls into that category?

I was not using their definition of science. It you read why I included them, you would see that they admitted to not being able to define science.

Go out and find me a list of scientists that agree with you (shouldn't be hard), because everywhere I look all I see is scientists talking about studies confirming and expanding upon evolution...

Natural historians, not scientists. Remember the bit about argumentum ad populum being a logical fallacy?
Back to top
 

People who can't distinguish between etymology and entomology bug me in ways I cannot put into words.
WWW  
IP Logged
 
freediver
Gold Member
*****
Offline


www.ozpolitic.com

Posts: 48856
At my desk.
Re: Evolution v's Religion
Reply #86 - Apr 16th, 2007 at 2:06pm
 
Bah, no sh!t sherlock, did I ever claim it to be a true figure?

So you admit to making up your evidence?
Back to top
 

People who can't distinguish between etymology and entomology bug me in ways I cannot put into words.
WWW  
IP Logged
 
zoso
Gold Member
*****
Offline


OzPolitic

Posts: 512
Re: Evolution v's Religion
Reply #87 - Apr 16th, 2007 at 2:11pm
 
My evidence is posted above, take a few of those examples and demonstrate to me how they confirm your opinions? Because those examples are cited directly as counter arguments to the stupid claims you and other make.

The 90% thing was colour, I might as much have said 'lots' and the meaning would be no different, you get it, you just want to argue because it suits your agenda to muddy the waters and keep this debate off track.

Take the examples, show how they fit your description.

Oh and I see you agree with me now?
Quote:
you would see that they admitted to not being able to define science

Quite...
Back to top
 
 
IP Logged
 
freediver
Gold Member
*****
Offline


www.ozpolitic.com

Posts: 48856
At my desk.
Re: Evolution v's Religion
Reply #88 - Apr 16th, 2007 at 2:21pm
 
My evidence is posted above, take a few of those examples and demonstrate to me how they confirm your opinions?

Again you misunderstand my argument. They neither confirm nor contradice what I have been saying.

Because those examples are cited directly as counter arguments to the stupid claims you and other make.

You may cite them as such, but only because you do not understand my argument.
Back to top
 

People who can't distinguish between etymology and entomology bug me in ways I cannot put into words.
WWW  
IP Logged
 
zoso
Gold Member
*****
Offline


OzPolitic

Posts: 512
Re: Evolution v's Religion
Reply #89 - Apr 16th, 2007 at 2:32pm
 
Bullsh!t freediver I understand every part of your argument. You claim evolution cannot be falsified and therefore is a theory that encompasses everything, yet I cited examples of ideas that would falsify evolution, you simply dismissed them as not empirical, then at a later point accepted that empiricism is not the only method of science...not only that but you did not explain in any sort of detail how my examples are not empirical.

Tell me freediver: testing the different genetic sequences of fossil records to confirm changes over time, coupled with carbon dating to confirm that age, how is this not empirical methods that test the null hypothesis that a static fossil record would counter evolution?

The presence of chimeras? How does this not empirically falsify evolution? Are you going to suggest that the classification of species and genetic analysis are not empirical methods? Go get some bloody education in the field!

You believe that evolution has no predictive value, and yet in examples I have cited experiments have been conducted to empirically compare a species living in positive environments to those living in harsh environments and the prediction that there would be beneficial mutations under these conditions held up...?

You think that the idea of beneficial mutations is a load of tripe, and yet numerous empirical studies have been conducted to test this assertion and have yielded positive results....? THE EXAMPLES ARE ABOVE, smacking READ THROUGH THEM.
Back to top
« Last Edit: Apr 16th, 2007 at 2:43pm by zoso »  
 
IP Logged
 
Pages: 1 ... 4 5 6 7 8 ... 28
Send Topic Print