Bobby. wrote on Jan 5
th, 2013 at 5:38pm:
Dear master Light,
I don't think we can put a power station on the sun to tap that resource.
forgiven
namaste
http://en.wikipedia.org/wiki/CryptochromeCryptochromes (from the Greek κρυπτό χρώμα, hidden colour) are a class of blue light-sensitive flavoproteins found in plants and animals. Cryptochromes are involved in the circadian rhythms of plants and animals, and in the sensing of magnetic fields in a number of species. The name Cryptochrome was proposed as a pun combining the cryptic nature of the photoreceptor, and the cryptogamic organisms on which many blue light studies were carried out.[2]
The two genes Cry1 and Cry2 code for the two cryptochrome proteins CRY1 and CRY2.[3] In insects and plants, CRY1 regulates the circadian clock in a light-dependent fashion, whereas in mammals, CRY1 and CRY2 act as light-independent inhibitors of CLOCK-BMAL1 components of the circadian clock.[4] In plants, blue light photoreception can be used to cue developmental signals
http://www.nature.com/ncomms/journal/v2/n6/full/ncomms1364.htmlHuman cryptochrome exhibits light-dependent magnetosensitivity
Humans are not believed to have a magnetic sense, even though many animals use the Earth's magnetic field for orientation and navigation. One model of magnetosensing in animals proposes that geomagnetic fields are perceived by light-sensitive chemical reactions involving the flavoprotein cryptochrome (CRY). Here we show using a transgenic approach that human CRY2, which is heavily expressed in the retina, can function as a magnetosensor in the magnetoreception system of Drosophila and that it does so in a light-dependent manner. The results show that human CRY2 has the molecular capability to function as a light-sensitive magnetosensor and reopen an area of sensory biology that is ready for further exploration in humans.
http://www.bbc.co.uk/news/science-environment-13809144Human eye protein senses Earth's magnetism
By Jason Palmer
Science and technology reporter, BBC News
A light-sensitive protein in the human eye has been shown to act as a "compass" in a magnetic field, when it is present in flies' eyes.
The study in Nature Communications showed that without their natural "magnetoreception" protein, the flies did not respond to a magnetic field - but replacing the protein with the human version restored the ability.
Despite much controversy, no conclusive evidence exists that humans can sense the Earth's magnetic field, and the find may revive interest in the idea.
Although humans, like migratory birds, are known to have cryptochrome in their eyes, the idea of human magnetoreception has remained largely unexplored since pioneering experiments by Robin Baker of the University of Manchester in the 1980s.
Dr Baker used a long series of experiments on thousands of volunteers that suggested humans could indirectly sense magnetic fields, though he never definitively identified the mechanism. In subsequent years, several groups attempted to repeat those experiments, claiming opposing results.
Time, flies
At the heart of the current study is a molecule called cryptochrome - an ancient protein present, in one of its two major forms, in every animal on Earth.
The protein is implicated in the regulation of circadian rhythms - the "body clocks" of humans and other animals - and in the navigational skills of several species including migratory birds, monarch butterflies, and the fruit fly Drosophila melanogaster.
The exact mechanism behind animals' navigational abilities remains a mystery, however, and an active area of research.
Continue reading the main story
“
Start Quote
I would be very surprised if we don't have this sense... the issue is to figure out how we use it”
Steven Reppert
University of Massachusetts Medical School
Steven Reppert of the University of Massachusetts Medical School and his colleagues have been following the roles that cryptochrome plays in some of these species for a number of years.
D. melanogaster flies can be genetically engineered to produce cryptochrome-2, the version of the protein present in monarch butterflies and in vertebrate animals including humans.
Last year, Dr Reppert's team showed in a Nature paper that flies without either cryptochrome were unable to align themselves with magnetic fields, but that the magnetoreception ability was recovered when the flies produced the non-native cryptochrome-2.
"We developed a system to study the real mechanism of magnetosensing in fruit flies... we can put these proteins from other animals into the fly and ask, 'do these proteins in their different forms actually function as magnetoreceptors?'," Dr Reppert told BBC News.
"Of all the vertebrates, the one that seemed to make the most sense was trying to put in the cryptochrome from humans."
The results mirrored the experiments with monarch butterflies. D. melanogaster flies with no cryptochrome showed no evidence of magnetoreception, but when genetically engineered to produce the human version, they recovered their abilities.
__________
research "circadian rhythms" for further explanation
or watch freemasonic mythbusters
freewill you see?
be at peace
namaste