[... continued]
On a hot day, the first turbine starts spinning by 10 or 11 a.m., and the last generator might stay on until 8 p.m. Billions of gallons of water flow from the Upper Reservoir (which can drop 105 feet) to the Lower Reservoir (which can rise 60 feet). However, just looking at the surface of the Lower Reservoir from the parking lot by the station, a gentle roiling near the station is all that is visible to suggest anything is happening. While there are fish and normal wildlife in the reservoirs, fishing and other recreational activity is forbidden because of the steep decline into the reservoir, as well as the dramatic change in water levels over the course of a day. Later in the day, as demand drops, the turbines switch off and the other main purpose of the facility takes center stage.
Three people operate the night shift, using cheaper, low-demand power from the grid to pump the water that flowed down all day into the Lower Reservoir back up the tunnels to the Upper Reservoir. Some days they can get it all back up. Many days they cannot — when demand is high, when there is not enough water in the area due to drought, when demand is higher than normal at night. They usually try to catch up over the weekend when demand is lower.
Over the last 28 years, power output is essentially unchanged, but the pace within the power station has picked up. The grid cycles them up and down more frequently, so that now the turbines come on and offline 4,500 times per year. There is more electricity demand than there was in the 80s, and more demand peaks mean more times when a turbine needs to turn on and off. Technological upgrades allow for more precise management of the whole system.
The facility has 3,030 megawatts of capacity (3.03 gigawatts), meaning that when the upper reservoir is full and all 6 turbines are spinning, it can produce that much power to the grid. The average generation is 2,772 megawatts — as water exits the Upper Reservoir, the pressure of water (the head, or weight of water) turning the turbines decreases, meaning that the facility starts to produce less power when there is less water.
“So as you run it down and deplete that, you’re going to get less generation output,” said Fridley, the station manager. “As the day progresses on, as we empty this upper reservoir out, then that is going to deplete.”
Climate Change and HydropowerLower Reservoir, with the station to the left. Outflow from the penstocks visible on left.
The usual concerns about how climate change will impact the power grid involve storms that knock down infrastructure, flooding that shorts out or damages equipment, or heat waves that buckle metal or drive up electricity demand for cooling. Drought, however, is the worst enemy of the hydroelectric dam. Normally, a pumped storage facility contains so much water and is self-contained enough that drought would not trouble it. But recently, concerns about water levels have caused some concern for even the largest pumped storage facility in the world.
Fridley explained that “We have the capability of storing 24,000 megawatt-hours up on the mountain on any given day. And if we have drought conditions that eat into that, we’re just reduced on power output. It’s as simple as that, it’s simple physics. The plan is to just let it dig into the power. Because there’s really nothing else you can do. If there’s no water, you can’t make electricity… We have not got to that point yet, but we’ve had some close calls.”
The creeks that feed Bath County can vary from peaks of over 400 cubic feet per second (cfs) during floods, to lows of 8-12 cfs in the summer when there’s a drought.
“The concern is when we get into drought periods,” said Nelson, the station’s power generation manager. “Last year was one of our worst years we’ve had in a long time, and that is a concern because if you get through the summer and you lose enough water you can’t fill the upper reservoir.”
“It depends on how bad you got it, continued Nelson. “If you can’t fill it totally full, it doesn’t really hurt you that much because we don’t normally use all of it — we don’t normally fill it up all the way overnight and then bring it all down the next day. But as it gets worse, it could come a point that you really couldn’t fill it to the point that you lose some of the storage so you lose some of the power capability.”
Times of high demand can help to drop the levels of the Upper Reservoir dangerously low. “A few years ago we had that real hot week,” said Nelson. “We actually pumped on the high load of the day, I guess so we’d have energy for the next day. So that was the only time I’ve ever seen us do that. Everybody else was generating full and we were pumping.”
Steve King, the plant’s technical support supervisor, explained how the reservoir was built with drought in mind. The excavation provided a “conservation pool” as an extra amount of water to get through the drier summer months. “In recent years we’ve come awful close to depleting that conservation pool.” 2012 brought “abnormally dry” drought conditions to most of Virginia and much of the country.
[continued ...]